Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(4): 378-384, 2024 Apr 15.
Article in Chinese | MEDLINE | ID: mdl-38660902

ABSTRACT

OBJECTIVES: To dynamically observe the changes in hypoxia-inducible factor 1α (HIF-1α) and Bcl-2/adenovirus E1B19kDa-interacting protein 3 (BNIP3) in children with traumatic brain injury (TBI) and evaluate their clinical value in predicting the severity and prognosis of pediatric TBI. METHODS: A prospective study included 47 children with moderate to severe TBI from January 2021 to July 2023, categorized into moderate (scores 9-12) and severe (scores 3-8) subgroups based on the Glasgow Coma Scale. A control group consisted of 30 children diagnosed and treated for inguinal hernia during the same period, with no underlying diseases. The levels of HIF-1α, BNIP3, autophagy-related protein Beclin-1, and S100B were compared among groups. The predictive value of HIF-1α, BNIP3, Beclin-1, and S100B for the severity and prognosis of TBI was assessed using receiver operating characteristic (ROC) curves. RESULTS: Serum levels of HIF-1α, BNIP3, Beclin-1, and S100B in the TBI group were higher than those in the control group (P<0.05). Among the TBI patients, the severe subgroup had higher levels of HIF-1α, BNIP3, Beclin-1, and S100B than the moderate subgroup (P<0.05). Correlation analysis showed that the serum levels of HIF-1α, BNIP3, Beclin-1, and S100B were negatively correlated with the Glasgow Coma Scale scores (P<0.05). After 7 days of treatment, serum levels of HIF-1α, BNIP3, Beclin-1, and S100B in both non-surgical and surgical TBI patients decreased compared to before treatment (P<0.05). ROC curve analysis indicated that the areas under the curve for predicting severe TBI based on serum levels of HIF-1α, BNIP3, Beclin-1, and S100B were 0.782, 0.835, 0.872, and 0.880, respectively (P<0.05), and for predicting poor prognosis of TBI were 0.749, 0.775, 0.814, and 0.751, respectively (P<0.05). CONCLUSIONS: Serum levels of HIF-1α, BNIP3, and Beclin-1 are significantly elevated in children with TBI, and their measurement can aid in the clinical assessment of the severity and prognosis of pediatric TBI.


Subject(s)
Beclin-1 , Brain Injuries, Traumatic , Hypoxia-Inducible Factor 1, alpha Subunit , Membrane Proteins , Humans , Male , Female , Brain Injuries, Traumatic/blood , Child , Membrane Proteins/blood , Child, Preschool , Hypoxia-Inducible Factor 1, alpha Subunit/blood , Beclin-1/blood , Prognosis , Proto-Oncogene Proteins/blood , S100 Calcium Binding Protein beta Subunit/blood , Prospective Studies , Infant , Adolescent
2.
Biochem Biophys Res Commun ; 513(4): 800-806, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31000197

ABSTRACT

Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) overexpression promotes glioma cell progression. The aim of the current study is to silence IGF2BP1 in glioma cells by the microRNA (miRNA) strategy. The bio-informatic analyses identified that microRNA-4500 (miR-4500) putatively targets 3'-UTR (3'-untranslated region) of IGF2BP1. In A172 cells and primary human glioma cells ectopic overexpression of the wild-type miR-4500 (but not the mutant form) downregulated IGF2BP1 and its target genes (Gli1, IGF2 and c-Myc). Functional studies show that ectopic miR-4500 overexpression inhibited glioma cell growth, survival, proliferation, migration and invasion. Conversely, in A172 cells miR-4500 inhibition, by a lentiviral construct, increased expression of IGF2BP1 and its targets, promoting cell survival, proliferation and migration. Furthermore, IGF2BP1 knockout by the CRISPR/Cas9 method inhibited A172 cell progression. Significantly, miR-4500 overexpression or miR-4500 inhibition was ineffective in IGF2BP1 knockout A172 cells. At last, we show that miR-4500 levels are downregulated in human glioma tissues, correlating with IGF2BP1 upregulation. Together, we conclude that miR-4500 inhibits human glioma cell progression by targeting IGF2BP1.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/pathology , Disease Progression , Glioma/genetics , Glioma/pathology , MicroRNAs/metabolism , RNA-Binding Proteins/metabolism , Base Sequence , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Cell Survival/genetics , Down-Regulation/genetics , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics , Neoplasm Invasiveness , RNA-Binding Proteins/genetics , Up-Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...